Abstract
Alzheimer's disease (AD) constitutes the leading cause of dementia worldwide. It is associated to amyloid-β (Aβ) aggregation and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Evidence suggests that the canonical Wnt pathway is deregulated in AD. Pathway activity is mediated by β-catenin stabilization in the cytosol, and subsequent translocation to the nucleus to regulate the expression of several genes implicated in brain homeostasis and functioning. It was recently proposed that Dickkopf-related protein-1 (DKK1), an endogenous antagonist of the pathway, might be implicated in AD pathogenesis. Here, we hypothesized that canonical Wnt pathway deactivation associated to DKK1 induction contributes to late-onset AD pathogenesis, and thus DKK1 neutralization could attenuate AD pathology. For this purpose, human post-mortem AD brain samples were used to assess pathway activity, and aged APPswe/PS1 mice were used to investigate DKK1 in late-onset AD-like pathology and therapy. Our findings indicate that β-catenin levels progressively decrease in the brain of AD patients, correlating with the duration of symptoms. Next, we found that Aβ pathology in APPswe/PS1 mediates DKK1 induction in the brain. Pharmacological neutralization of DKK1's biological activity in APPswe/PS1 mice restores pathway activity by stabilizing β-catenin, attenuates Aβ pathology, and ameliorates the memory of mice. Attenuation of AD-like pathology upon DKK1 inhibition is accompanied by a reduced protein expression of beta-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1). Moreover, DKK1 inhibition enhances vascular density, promotes blood-brain barrier (BBB) integrity by increasing claudin 5, glucose transporter-1 (GLUT1), and ATP-binding cassette sub-family B member-1 (ABCB1) protein expression, as well as ameliorates synaptic plasticity by increasing brain-derived neurotrophic factor (BDNF), and postsynaptic density protein-95 (PSD-95) protein expression. DKK1 conditional induction reduces claudin 5, abcb1, and psd-95 mRNA expression, validating its inhibition effects. Our results indicate that neutralization of DKK1's biological activity attenuates AD-like pathology by restoring canonical Wnt pathway activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.