Abstract
Squamous esophageal epithelium adapts to acid reflux-mediated injury by proliferation and differentiation via signal transduction pathways. Induction of the Wnt antagonist Dickkopf-1 (Dkk1) is involved in tissue repair during inflammation and cellular injury. In this study, we aimed to identify the biological role of Dkk1 in human reflux esophagitis with respect to cell growth and regulation of Wnt signaling. Esophageal biopsies from reflux-esophagitis patients (n = 15) and healthy individuals (n = 10) were characterized in terms of Dkk1 expression. The role of Dkk1 in response to acid-mediated epithelial injury was analyzed by cellular assays in vitro utilizing squamous esophageal epithelial cell lines (EPC1-hTERT, EPC2-hTERT, and HEEC). Dkk1 was significantly overexpressed in human reflux-esophagitis tissue compared with healthy esophageal mucosa at transcriptional and translational levels. After acute and chronic acid (pH 4) exposure, esophageal squamous epithelial cell lines expressed and secreted high levels of Dkk1 in response to stress-associated DNA injury. High extracellular levels of human recombinant Dkk1 inhibited epithelial cell growth and induced cellular senescence in vitro, as demonstrated by reduced cell proliferation, G0/G1 cell cycle arrest, elevated senescence-associated β-galactosidase activity, and upregulation of p16. Acid pulsing induced Dkk1-mediated senescence, which was directly linked to the ability of Dkk1 to antagonize the canonical Wnt/β-catenin signaling. In healthy esophageal mucosa, Dkk1 expression was associated with low expression of transcriptionally active β-catenin, while in reflux-esophagitis tissue, Dkk1 overexpression correlated with increased senescence-associated β-galactosidase activity and p16 upregulation. The data indicate that, in human reflux esophagitis, Dkk1 functions as a secreted growth inhibitor by suppressing Wnt/β-catenin signaling and promoting cellular senescence. These findings suggest a significant role for Dkk1 and cellular senescence in esophageal tissue homeostasis during reflux esophagitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.