Abstract
Considering the unique energy level structure of the one-axis twisting Hamiltonian in combination with standard rotations, we propose the implementation of a rapid adiabatic passage scheme on the Dicke state basis. The method permits to drive Dicke states of the many-atom system into entangled states with maximum quantum Fisher information. The designed states allow us to overcome the classical limit of phase sensitivity in quantum metrology and sensing. We show how to generate superpositions of Dicke states, which maximize metrological gain for a Ramsey interferometric measurement. The proposed scheme is remarkably robust to variations of the driving field and has favorable time scaling, especially for a small to moderate (∼1000) number of atoms, where the total time does not depend on the number of atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.