Abstract

We investigate bounds on the dichromatic number of digraphs which avoid a fixed digraph as a topological minor. For a digraph F, denote by maderχ→(F) the smallest integer k such that every k-dichromatic digraph contains a subdivision of F. As our first main result, we prove that if F is an orientation of a cycle then maderχ→(F)=v(F). This settles a conjecture of Aboulker, Cohen, Havet, Lochet, Moura and Thomassé. We also extend this result to the more general class of orientations of cactus graphs, and to bioriented forests.Our second main result is that maderχ→(F)=4 for every tournament F of order 4. This is an extension of the classical result by Dirac that 4-chromatic graphs contain a K4-subdivision to directed graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.