Abstract
Since infection is a common cause of delayed wound healing, it is important to understand the effect of low-level laser therapy (LLLT) in bacterial mechanisms. In this study we evaluated the effects of LLLT on antibiotic resistance, division rate, and biofilm formation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries in humans and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the susceptibility of an antimicrobial to ampicillin and piperacillin + tazobactam, quantification of areas of bacterial colonies, and biofilm formation of bacterial cells. Fluence, wavelength, and emission mode were used in the therapeutic protocols for wound healing. The data showed no changes in the areas of the colonies, but dichromatic laser radiation decreased biofilm formation, while a monochromatic red laser at low dose increased biofilm formation and infrared at high dose decreased antibiotic resistance to ampicillin. LLLT modulates antibiotic resistance and biofilm formation of P. agglomerans, but these depend on the laser irradiation parameters, since dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation. Thus, simultaneous dichromatic low-level red and infrared lasers could be a new option for the treatment of infected wounds, reducing biofilm formation, without altering antibiotic resistance and the division rate of P. agglomerans cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.