Abstract

In this paper, a novel parallel learning framework is developed to solve zero-sum games for discrete-time nonlinear systems. Briefly, the purpose of this study is to determine a tentative function according to the prior knowledge of the value iteration (VI) algorithm. The learning process of the parallel controllers can be guided by the tentative function. That is to say, the neighborhood of the optimal cost function can be compressed within a small range via two typical exploration policies. Based on the parallel learning framework, a novel dichotomy VI algorithm is established to accelerate the learning speed. It is shown that the parallel controllers will converge to the optimal policy from contrary initial policies. Finally, two typical systems are used to demonstrate the learning performance of the constructed dichotomy VI algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.