Abstract

Oxide materials are important candidates for the next generation of electronics due to a wide array of desired properties, which they can exhibit alone or when combined with other materials. While SrTiO3 (STO) is often considered a prototypical oxide, it, too, hosts a wide array of unusual properties, including a 2-dimensional electron gas (2DEG), which can form at the surface when exposed to ultraviolet (UV) light. Using layer-by-layer growth of high-quality STO films, we show that the 2DEG only forms with the SrO termination and not with the TiO2 termination, contrary to expectation. This dichotomy of the observed angle-resolved photoemission spectroscopy (ARPES) spectra is similarly seen in BaTiO3 (BTO), in which the 2DEG is only observed for BaO-terminated films. These results will allow for a deeper understanding and better control of the electronic structure of titanate films, substrates, and heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.