Abstract

SummaryThe Martian crustal dichotomy (MCD) between the southern highlands and the northern lowlands is the planet’s most ancient crustal structure, but its origins and evolution remain enigmatic. Understanding of the MCD comes largely from present-day and shallow crustal constraints. Lacking ancient and deeper constraints, hypotheses for the origin of the MCD range from an early giant impact, partial melting from sustained mantle convection, or some combination. We investigate with seismological modeling the best-preserved case of the “antipodal effect”—energy from an impact that concentrates and induces uplift and fracturing promoting volcanism at its antipode—the Hellas crater and the Alba Patera volcano on Mars. The volcano is latitudinally offset ∼2° (∼119 km) from the expected antipode, and we explore whether the MCD can explain this deflection. Variations across the MCD in topography, thickness, and composition have only minor effects. Simulations capable of sufficiently decelerating southern surface waves require the presence of 2%–5% more partial melt in the southern highlands. As the age of impact ca. 4 billion years ago post-dates the formation of the MCD, our partial melting results thus imply that, with or without an early giant impact, the MCD was modified by mantle convection in order to supply enough heat for crustal melts for several hundreds of millions of years after Mars formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.