Abstract
ABSTRACT A correct modelization of the insurance losses distribution is crucial in the insurance industry. This distribution is generally highly positively skewed, unimodal hump-shaped, and with a heavy right tail. Compound models are a profitable way to accommodate situations in which some of the probability masses are shifted to the tails of the distribution. Therefore, in this work, a general approach to compound unimodal hump-shaped distributions with a mixing dichotomous distribution is introduced. A 2-parameter unimodal hump-shaped distribution, defined on a positive support, is considered and reparametrized with respect to the mode and to another parameter related to the distribution variability. The compound is performed by scaling the latter parameter by means of a dichotomous mixing distribution that governs the tail behavior of the resulting model. The proposed model can also allow for automatic detection of typical and atypical losses via a simple procedure based on maximum a posteriori probabilities. Unimodal gamma and log-normal are considered as examples of unimodal hump-shaped distributions. The resulting models are firstly evaluated in a sensitivity study and then fitted to two real insurance loss datasets, along with several well-known competitors. Likelihood-based information criteria and risk measures are used to compare the models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.