Abstract

Monoclonal antibodies against the TCR/CD3 complex are capable of activating T cells which in turn may induce immunoglobulin synthesis in B cells under appropriate conditions. Here we present evidence that distinct immune responses, induced by four commonly used TCR/CD3 mAb (Leu4, OKT3, BMA030, BMA031) were related to the mAb interaction with monocyte Fc receptors for IgG. Depending on their isotype and on the technique by which they were crosslinked, TCR/CD3 mAb induced variable IgM and IgG synthesis in PBMC: If the mAb were crosslinked by monocyte IgG-Fc receptors they induced a high Ig production, while cross-linking the same mAb by plastic-bound goat anti-mouse antibodies (panning) failed to do so. Nevertheless, both crosslinking techniques triggered a strong proliferation and IL-2, IL-4, and IFNγ lymphokine gene expression. The lack of Ig production under panning conditions was due to an additional IgG-Fc receptor interaction with monocytes: (a) If namely mAb F(ab′) 2 fragments, or mAb isotypes unable to bind to monocyte Fc receptors (IgG2b, IgG1 in nonresponders) were crosslinked by panning, both a good proliferation as well as Ig production ensued; (b) if TCR/CD3 mAb isotypes which could additionally bind to monocyte Fc receptor (IgG2a) were crosslinked, no Ig production occurred; (c) if mAb F(ab′) 2 fragments were cross-linked with a second anti-T cell antibody of IgG2a isotype, which could bind to monocyte Fc receptors, Ig synthesis was reduced. Interestingly enough, this diminishing effect, due to monocyte Fc receptor interaction, was only observed if CD4-positive cells were proliferating, but not if CD8-positive cells were activated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.