Abstract

Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant, involved in the progression of many cancers, including liver cancer. However, the underlying mechanism(s) of DDT, especially how low doses DDT cause liver cancer, is poorly understood. In this study, we evaluated the impact of p,p′-DDT on the growth of hepatocellular carcinoma using both in vitro and in vivo models. The present data indicated that the proliferation of HepG2 cells was strikingly promoted after exposed to p,p′-DDT for 4 days. In addition, reactive oxygen species (ROS) content was significantly elevated, accompanied with inhibitions of γ-glutamylcysteine synthetase (γ-GCS) and superoxide dismutase (SOD) activities. Interestingly, the levels of β-catenin and its downstream target genes (c-Myc and CyclinD1) were significantly up-regulated, and co-treatment of NAC, the ROS inhibitor, inhibited these over-expressed proteins. Moreover, the p,p′-DDT-stimulated proliferation of HepG2 cells could be reversed after NAC or β-catenin siRNA co-treatment. Likewise, p,p′-DDT treatment increased the growth of tumor in nude mice, stimulated oxidative stress and Wnt/β-catenin pathway. Our study indicates that low doses p,p′-DDT exposure promote the growth of hepatocellular carcinoma via Wnt/β-catenin pathway which is activated by oxidative stress. The finding suggests an association between low dose DDT exposure and liver cancer growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.