Abstract

This paper presents a quantitative comparison of the dichlorodimethylsilane (DDMS) monolayer to the octade-cyltrichlorosilane (OTS) self-assembled monolayer (SAM) with respect to the film properties and their effectiveness as anti-stiction coatings for micromechanical structures. Both coatings have been evaluated in several ways, including atomic force microscopy (AFM), contact angle analysis (CAA), work of adhesion by cantilever beam array (CBA) technique and coefficient of static friction using a sidewall testing device. While water and hexadecane contact angles are comparable, the DDMS coated microstructures exhibit higher adhesion than OTS coated ones. Furthermore, coefficient of static friction data indicate that the DDMS films are not as effective at lubrication as the OTS SAMs are, although both exhibit much improvement over chemical oxide. However, AFM data show that the samples which receive DDMS treatment accumulate fewer particles during processing than those which receive the OTS SAM treatment. The thermal stability of the DDMS film in air far exceeds the OTS SAM, as the DDMS remains very hydrophobic to temperatures upwards of 400/spl deg/C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call