Abstract

Trichloroethylene is a widespread industrial solvent and one of the most common environmental contaminants. Trichloroethylene causes hepatocarcinoma in the B6C3F1 mouse in a dose-dependent manner. Trichloroethylene's hepatocarcinogenicity is thought to be mediated through its metabolites trichloroacetate and dichloroacetate. Although the mechanism of action is not well understood, hepatic tumors are thought to arise as a result of excessive peroxisome-dependent active oxygen production or secondary to enhanced cell replication. The peroxisome proliferative activity of trichloroacetate has been replicated in cultured rodent hepatocytes, while that of dichloroacetate has not been demonstrated. The present experiments were designed to characterize the peroxisome proliferative response to dichloroacetate in hepatocyte cultures from male B6C3F1 mice and male Long Evans rats. The cultured hepatocytes were treated after attachment with 0.1, 0.5, 1.0, 2.0, or 4.0 mM dichloroacetate for 72 hours. Peroxisome proliferation was assessed by measuring palmitoyl-CoA oxidation and by immunoquantitation of peroxisomal bifunctional enzyme. Palmitoyl CoA oxidation increased in a concentration-dependent manner, with maximal induction of 5.5- and 5-fold in mouse and rat hepatocytes, respectively, after treatment with 2.0 mM dichloroacetate. Peroxisomal bifunctional enzyme protein levels also increased in a concentration-dependent manner in both rat and mouse hepatocytes in response to dichloroacetate exposure. These results indicate that the peroxisomal response observed in vivo in response to dichloroacetate administration can be reproduced in primary cultures of rat and mouse hepatocytes treated with dichloroacetate. Further studies using this model system will help elucidate mechanisms of dichloroacetate-induced hepatocarcinogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.