Abstract

Dichloroacetate (DCA) is a small molecule that reduces ambient concentrations of lactate in man. It was the purpose of this study to develop pharmacokinetic and pharmacodynamic models for determination of a dose for a pivotal Phase III clinical trial of DCA in patients with traumatic brain injury (TBI). Population pharmacokinetic and pharmacodynamic models were developed for DCA using NONMEM software. The pharmacokinetic data were fit to a physiologic two-compartment model, and the pharmacodynamic data were fit to an indirect physiologic response model. Simulations were employed to evaluate various dosing strategies for consideration in a pivotal Phase III clinical trial of DCA. For the pharmacokinetic model, it was discovered that the clearance of DCA decreased on multiple dosing from 4.82 L/h to 1.07 L/h and that the pharmacokinetics and pharmacodynamics in TBI patients could not be predicted from normal volunteers. Population pharmacokinetic modeling and simulation of the expected effects of several dosing strategies were useful procedures for designing a Phase III trial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call