Abstract

BackgroundPlants are naturally associated with root microbiota, which are microbial communities influential to host fitness. Thus, it is important to understand how plants control root microbiota. Epigenetic factors regulate the readouts of genetic information and consequently many essential biological processes. However, it has been elusive whether RNA-directed DNA methylation (RdDM) affects root microbiota assembly.ResultsBy applying 16S rRNA gene sequencing, we investigated root microbiota of Arabidopsis mutants defective in the canonical RdDM pathway, including dcl234 that harbors triple mutation in the Dicer-like proteins DCL3, DCL2, and DCL4, which produce small RNAs for RdDM. Alpha diversity analysis showed reductions in microbe richness from the soil to roots, reflecting the selectivity of plants on root-associated bacteria. The dcl234 triple mutation significantly decreases the levels of Aeromonadaceae and Pseudomonadaceae, while it increases the abundance of many other bacteria families in the root microbiota. However, mutants of the other examined key players in the canonical RdDM pathway showed similar microbiota as Col-0, indicating that the DCL proteins affect root microbiota in an RdDM-independent manner. Subsequently gene analysis by shotgun sequencing of root microbiome indicated a selective pressure on microbial resistance to plant defense in the dcl234 mutant. Consistent with the altered plant-microbe interactions, dcl234 displayed altered characters, including the mRNA and sRNA transcriptomes that jointly highlighted altered cell wall organization and up-regulated defense, the decreased cellulose and callose deposition in root xylem, and the restructured profile of root exudates that supported the alterations in gene expression and cell wall modifications.ConclusionOur findings demonstrate an important role of the DCL proteins in influencing root microbiota through integrated regulation of plant defense, cell wall compositions, and root exudates. Our results also demonstrate that the canonical RdDM is dispensable for Arabidopsis root microbiota. These findings not only establish a connection between root microbiota and plant epigenetic factors but also highlight the complexity of plant regulation of root microbiota.9t4aP5wZAjZ4XcwBxRVNPdVideo abstract

Highlights

  • Plants are naturally associated with root microbiota, which are microbial communities influential to host fitness

  • Our results demonstrate that the canonical RNA-directed DNA methylation (RdDM) is dispensable for Arabidopsis root microbiota

  • The wild-type Arabidopsis accession Col-0 was compared with five RdDM mutants including nrpd1-3 that is defective in Pol IV, nrpe1-11 that is defective in Pol V, ddc that is defective in the DNA methyltransferases DRM1, DRM2, and CMT3, rrp6l1-1 that is defective in Rrp6-like 1 (RRP6L1), and the triple mutant dcl234

Read more

Summary

Introduction

Plants are naturally associated with root microbiota, which are microbial communities influential to host fitness. Epigenetic factors regulate the readouts of genetic information and many essential biological processes. It has been elusive whether RNA-directed DNA methylation (RdDM) affects root microbiota assembly. The assembly of rhizosphere microbiota has been shown to be affected by plant genotype [20,21,22,23] It is unclear whether rhizosphere microbiota is influenced by plant epigenetic factors, which control genome stability and control the transcription of genetic sequences and thereby many important biological processes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.