Abstract

In RNA interference, the RNase-III enzyme Dicer processes exogenous double-stranded RNA into small interfering RNAs (siRNAs). siRNAs guide RNA-induced silencing complexes to cleave homologous transcripts, enabling gene-specific knock-down. In plants, double-stranded RNA is processed into siRNA species of 21 nucleotides (nt) and 24 nt (ref. 5), but, unlike in nematodes, the Dicer enzymes involved in this processing have not been identified. Additionally, in both plants and nematodes, systemic signals with RNA components convey the sequence-specific effects of RNA interference between cells. Here, we describe Arabidopsis thaliana mutants with altered silencing cell-to-cell movement beyond the vasculature. At least three SILENCING MOVEMENT DEFICIENT genes (SMD1, SMD2 and SMD3) are required for trafficking, the extent of which correlates with siRNA levels in the veins. Five alleles defective in synthesis of 21-nt, but not 24-nt, siRNAs carry mutations in Dicer-like 4 (DCL4) that are involved in biogenesis of trans-acting siRNAs. We show that the biogenesis and function of trans-acting siRNA can be genetically uncoupled from a bona fide DCL4-dependent pathway that accounts for RNA interference and for production of the 21-nt siRNA component of the plant cell-to-cell silencing signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.