Abstract

Dicer participates in heterochromatin formation in fission yeast and plants. However, whether it has a similar role in mammals remains controversial. Here we showed that the human Dicer protein interacts with SIRT7, an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase, and holds a proportion of SIRT7 in the cytoplasm. Dicer knockdown led to an increase of chromatin-associated SIRT7 and simultaneously a decrease of cytoplasmic SIRT7, while its overexpression induced SIRT7 reduction in the chromatin-associated fraction and increment in the cytoplasm. Furthermore, DNA damaging agents promoted Dicer expression, leading to decreased level of chromatin-associated SIRT7 and increased level of H3K18Ac, which can be alleviated by Dicer knockdown. Taken together with that H3K18Ac was exclusively associated with the chromatin, our findings suggest that Dicer induction by DNA damaging treatments prevents H3K18Ac deacetylation, probably by trapping more SIRT7 in the cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.