Abstract

Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available.

Highlights

  • Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials

  • In 1955, Georges Nomarski established the theoretical basis for differential interference contrast (DIC) microscopy[4] that gains information about the optical path length of the sample and shows features that are invisible in a brightfield microscope

  • The quality of the algorithm is tested on three different datasets that we made publicly available in the Broad Bioimage Benchmark Collection (BBBC)[21]

Read more

Summary

Introduction

Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. Fluorescent images are quantitative, can be analyzed by suitable software Despite their advantages, phase contrast and DIC are qualitative methods. Label-free techniques have advantages over fluorescent microscopy: namely, cells can be observed without staining, so these techniques are not phototoxic and there is no need for chemical fixation of the sample in contrast to numerous fluorescent staining protocols. A Wollaston prism splits the light into two perpendicularly polarized light rays which are www.nature.com/scientificreports/

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.