Abstract

The influence of increasing the in vivo concentration of cyclic AMP on the activity of cyclic nucleotide phosphodiesterase (PDE) in rat heart was investigated. One, three, and five hourly injections of 5.0 mg dibutyryl (Bt2) cyclic AMP significantly increased the activity of PDE in the supernatant fraction of rat heart using 1.0 microM cyclic AMP as the assay substrate concentration. When 100 microM cyclic AMP was used in the assay reaction, increases in enzymes activity were seen following five and eight nucleotide injections. The nucleotide-induced increase in PDE activity was dose dependent. When the five-injection protocol was used, PDE activity remained elevated for at least 4 h, while activity had returned to control levels within this time when two hourly injections were used. The nucleotide stimulation of PDE activity was blocked by cycloheximide. Five hourly infections of Bt2 cyclic AMP increased PDE activity in the liver and fast-twitch red muscle. A reduction in PDE activity in fast-twitch white muscle was seen following nucleotide injections. These findings are consistent with the hypothesis that prolonged elevations in the intracellular concentration of cyclic AMP cause an elevation in myocardial PDE activity. The increased activity seems to be the result of protein synthesis. These data suggest that cyclic AMP contributes significantly in regulating its own metabolism in the rat heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call