Abstract

Plasticizer plays an imperceptible role in interfering with the structure and function of wastewater biofilms, but the inherent influence mechanism still remains unknown. Here, the responses in electrochemical, structural, microbial properties of electroactive biofilm (EAB) to plasticizer (dibutyl phthalate, DBP) were comprehensively elucidated, especially for the property variation of extracellular polymeric substances (EPS). The biofilm-0 in DBP-absent environment contributed to 22.9% and 63.9% higher current, compared to those in 1 mg/L and 10 mg/L DBP environment (biofilm-1 and biofilm-10). Chronic exposure to high-concentration DBP significantly boosted the content and distribution width of polysaccharide in EPS, but the electron exchange capacity of EPS decreased 76.6% to 0.146 μmol e−/mg EPS for biofilm-10. The bacteria were subjected to metabolic function loss, in terms of esterase activity and membrane integrity, by using flow cytometry. The DBP exposure also imposed selective pressure on enrich EPS-secretion-related bacteria, while the Geobacter species decreased from 71.2% (biofilm-0) to 55.8% (biofilm-10). Consequently, the DBP exposure suppressed the pollutant degradation rate, which provided new insights into the EAB role as a promising core for wastewater treatment in plasticizer-existing environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call