Abstract

Organic ultralong room temperature phosphorescence (RTP), or organic afterglow, is a unique phenomenon, gaining widespread attention due to its far-reaching application potential and fundamental interest. Here, two laterally expanded 9,10-dimesityl-dihydro-9,10-diboraanthracene (DBA) derivatives are demonstrated as excellent afterglow materials for red and blue-green light emission, which is traced back to persistent thermally activated delayed fluorescence and RTP. The lateral substitution of polycyclic DBA scaffold, together with weak transversal electron-donating mesityl groups, ensures the optimal molecular properties for (reverse) intersystem crossing and long-lived triplet states in a rigid poly(methyl methacrylate) matrix. The achieved afterglow emission quantum yields of up to 3 % and 15 %, afterglow lifetimes up to 0.8 s and 3.2 s and afterglow durations up to 5 s and 25 s (for red and blue-green emitters, respectively) are attributed to the properties of single molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call