Abstract
In this paper, the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing diblock copolymer poly[(p-hydroxybenzaldehyde methacrylate)m-b-(2-((6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)oxy)ethyl methacrylate)n] (abbrev. poly(HAMAm-b-HEPOMAn)) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. When it was continued to react with titanium-hybridized aminopropyl-polyhedral oligomeric silsesquioxane (Ti-POSS) through a Schiff-base reaction, new grafted copolymers poly[(Ti-POSS-HAMA)m-b-HEPOMAn] (abbrev. PolyTi) were obtained. Then, they were used as macromolecular flame retardant to modify epoxy resin materials. The thermal, flame retardant and mechanical properties of the prepared EP/PolyTi composites were tested by TGA, DSC, LOI, UL-94, SEM, Raman, DMA, etc. The migration of phosphorus moiety from epoxy resin composites was analyzed by immersing the composites into ethanol/H2O solution and recording the extraction solution by UV-Vis spectroscopy. The results showed that the added PolyTi enhanced the glass transition temperature, the carbon residue, the graphitization of char, LOI, and mechanical properties of the EP/PolyTi composites when compared to pure cured EP. Furthermore, the phosphorus moieties were more likely to migrate from EP/DOPO composites than that from EP/PolyTi composites. Obviously, compared with small molecular flame retardant modified EP, the macromolecular flame retardant modified EP/PolyTi composites exhibited better thermal stability, flame retardancy, and resistance to migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.