Abstract
Due to intermediate hydrophobicity of methyl methacrylate (MMA) monomer in water, it is difficult to prepare its stable water in oil high internal phase emulsion (HIPE). Moreover, the addition of fully hydrophilic co-monomer such as 2-hydroxyethyl methacrylate (HEMA) in MMA monomer makes it further troublesome to stabilize these emulsions. This paper addresses the preparation of such type of difficult to prepare emulsions via addition of an amphiphilic fluorinated di-block copolymer (FDB), poly(2-dimethylamino)ethylmethacrylate-b-poly(trifluoroethyl methacrylate) (PDMAEMA-b-PTFEMA) as stabilizer. Interestingly, HEMA and/or HFBA (hexa fluorobutyl acrylate) as co-monomers were successfully added to impart some special properties such as thermodynamic stability, desired amphiphilicity to the final polyHIPEs. Fluorinated blocks in FDB anchored well at oil/water interface of HIPE, offering enough hydrophobicity to the comparatively hydrophilic monomers and in turn providing resistance against coalescence. MMA polyHIPEs were found to be fully hydrophobic just by replacing HEMA co-monomer with HFBA. Due to superb inherent hydrophobic nature of fluorine atoms, MMA-HFBA polyHIPEs showed remarkable water contact angle of 139°. Furthermore, the addition of fluorinated co-monomer in MMA based HIPEs significantly improved thermal stabilities of these materials with improvement in degradation temperature from 305 °C to 360 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.