Abstract

A versatile method for the preparation of dispersed nanotubes using polystyrene- b-polyisoprene diblock copolymers in different selective organic solvents is presented. Stable dispersions have been obtained in polar (DMF) and apolar (heptane) media depending on the selectivity of the diblock copolymers. They have been characterized by means of optical microscopy, TEM imaging and dynamic light scattering, showing the first demonstration of multiwall carbon nanotubes (MWCNTs) solutions with in situ characterization of diblock copolymer stabilization. The most effectively stabilized dispersions have been used to make nanotube/polystyrene composites. We find that the coating of the nanotubes by the diblock polymer does not prevent electrical transport, so that the system can exhibit a relatively high surface conductivity above the percolation threshold. The low percolation threshold experimentally determined is presumably due to weak attractive interactions between the nanotubes as the composites are dried.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.