Abstract

Dibenzoylmethane (DBM), a licorice-derived component, has numerous health benefits. The current study aimed to investigate the effect of DBM on adiposity-induced neuroinflammatory/oxidative response and microglial activation-induced neuronal cell damage. For this research, BV2 and HT22 cells were cultured using adipcyte- and microglia-conditioned media, respectively. DBM effectively suppressed lipopolysaccharide-induced productions in inducible nitric oxide synthase and cyclooxygenase2. Interleukin (IL)-6, monocyte chemoattractant protein-1, IL-1β, and tumor necrosis factor-α levels were also downregulated by DBM. In adipocyte-conditioned medium (ACM)-cultured BV2 cells, DBM effectively decreased ACM-induced generation of nitric oxide, reactive oxygen species, and inflammatory cytokines by activating nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling and reducing nuclear factor kappa-light-chain-enhancer of activated B cells. In BV2-conditioned medium (BVM)-cultured neuron cells, DBM recovered the BVM-induced reduction of neuronal cell viability, thereby regulating B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), and cleaved caspase-3 protein expression. Taken together, DBM suppressed adiposity-induced inflammation/oxidative responses and inflammation-induced neuronal cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call