Abstract

Ambipolar organic semiconductors are of high interest for organic field-effect transistors. For n-type conduction, low LUMO energies are required. Dibenzo[a,e]pentalenes (DBPs) are promising compounds; however, few derivatives exist with energetically low-lying LUMO levels. Here, we present DBP derivatives with LUMO energies down to -3.73 eV and small bandgaps down to 1.63 eV determined through cyclic voltammetry, UV/vis absorption spectroscopy, and TDDFT calculations. Single-crystal X-ray diffraction analysis revealed a 1D π-stacking mode. The addition of arylalkynyl substituents at the five-membered rings in a facile and versatile synthetic route allowed for tuning of the band gaps and LUMO energies. The synthetic route can easily be modified to access a variety of DBP derivatives. The LUMO energies of the DBP derivatives presented herein make them attractive for an application in n-type or ambipolar field-effect transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.