Abstract

Tetra-ortho-substituted, heteroaryl and cyclic azobenzenes have emerged as three key strategies on morphology design of photoswitch to diversify controllability. Cyclic azobenzene is of particular utilization in photo-energy conversion due to rigid and ring-strain structure. Despite the well-recognized diazocine, the photo-switching properties of seven-membered cyclic azobenzenes (diazepines) have yet been exploited. Herein, we report a family of dibenzo[b,f][1,4,5]chalcogenadiazepines (DBChDs) and their T-type photo-switching nature with tunable relaxation rate. Based on experiments together with DFT calculations, we found that an unsymmetric 2-bithiophenyl-dibenzo[b,f][1,4,5]thiadiazepine exhibited an efficient response to 445 nm laser stimulation (quantum efficiency, ΦZ→E =0.71) with millisecond relaxation half-life (t1/2 =40 ms). Photo-energy transduction efficiency was also exceptionally high with 29.1 % converted into ring-strain energy mainly loaded on azo π-bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.