Abstract

In order to provide a more detailed view on the structure–antimycobacterial activity relationship (SAR) of phenylcarbamic acid derivatives containing two centers of protonation, 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium oxalates (1a–d)/dichlorides (1e–h) as well as 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(di-propylammonio)propyl]azepanium oxalates (1i–l)/dichlorides (1m–p; alkoxy = butoxy to heptyloxy) were physicochemically characterized by estimation of their surface tension (γ; Traube’s stalagmometric method), electronic features (log ε; UV/Vis spectrophotometry) and lipophilic properties (log kw; isocratic RP-HPLC) as well. The experimental log kw dataset was studied together with computational logarithms of partition coefficients (log P) generated by various methods based mainly on atomic or combined atomic and fragmental principles. Similarities and differences between the experimental and in silico lipophilicity descriptors were analyzed by unscaled principal component analysis (PCA). The in vitro activity of compounds 1a–p was inspected against Mycobacterium tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794, respectively), M. tuberculosis H37Ra ATCC 25177, M. kansasii CNCTC My 235/80 (identical with ATCC 12478), the M. kansasii 6509/96 clinical isolate, M. kansasii DSM 44162, M. avium CNCTC My 330/80 (identical with ATCC 25291), M. smegmatis ATCC 700084 and M. marinum CAMP 5644, respectively. In vitro susceptibility of the mycobacteria to reference drugs isoniazid, ethambutol, ofloxacin or ciprofloxacin was tested as well. A very unique aspect of the research was that many compounds from the set 1a–p were highly efficient almost against all tested mycobacteria. The most promising derivatives showed MIC values varied from 1.9 μM to 8 μM, which were lower compared to those of used standards, especially if concerning ability to fight M. tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 or M. avium CNCTC My 330/80. Current in vitro biological assays and systematic SAR studies based on PCA approach as well as fitting procedures, which were supported by relevant statistical descriptors, proved that the compounds 1a–p represented a very promising molecular framework for development of ‘non-traditional’ but effective antimycobacterial agents.

Highlights

  • The investigated compounds 1a–p were prepared by multi step pathways using 2-aminophenol

  • A reaction of 10 a or 10 b with acetanhydride led to N-(2-/3-hydroxyphenyl)ethanamide

  • The solutions were cooled, neutralized and crude intermediates were extracted into diethyl ether (DEE)

Read more

Summary

Introduction

The strategy was successfully used in a case of in vitro screening and progressive debate [1,2,3,4,5,6]. The strategy was successfully used in a case of in vitro screening of of some β-lactam antibiotics (ceftarolineororceftazidime) ceftazidime)ininaacombination combinationwith withan an β-lactamase β-lactamase inhibitor inhibitor some β-lactam antibiotics Another encouraged example was in vitro and avibactam against Mycobacterium avium complex [3,4] Another encouraged example was in vitro and ex vivo testing of tricyclic thioridazine The molecule was ex vivo testing of tricyclic thioridazine (Figure 1a), an old neuroleptic phenothiazine. The molecule used used alone alone or in aor combinatorial therapy with anti-tuberculosis drugs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.