Abstract

In the present work we discuss three dibaryons without strangeness in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. In the calculation, the model parameters are taken from our previous work in which the nucleon-nucleon (NN) scattering phase shifts are fitted quite well. Firstly, the structure of deuteron is discussed, which is very important since it is the first dibaryon confirmed by experiment in the past many years. Deuteron belongs to NN system with spin S =1 and isospin T =0, the binding energy, scattering length and the relative wave functions of deuteron are discussed. The results show that the chiral SU(3) quark model describes the properties of deuteron quite well and tensor interaction is important in forming the deuteron loosely bound. Secondly, the predicted results of ΔΔ dibaryon with S =3 and T =0 are shown, the resultant binding energy and size of root-mean-square (RMS) of six quarks are calculated by including the L coupling and hidden color channel (CC) coupling. The results show that the CC coupling effect is much larger than the L mixing effect, which means that CC coupling plays an important role in forming the spin S =3 ΔΔ dibayon state. Our predicted binding energy is several tens MeV, it is lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. Unexpectedly, our predicted mass is quite close to the recent confirmation by WASA experiments in 2014. Thirdly, we present our new results of ΔΔ dibaryon with S = 0 and T =3, obtained recently by extending the single-channel calculation to including the CC coupling. It is seen that the CC coupling also has a relatively large effect on (ΔΔ)ST=03 state. However, its mass is still lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ, similar as that of (ΔΔ)ST=30 state. Finally, we further make some comparisons between S = 3 and S = 0 ΔΔ states to show the difference of the two dibaryons. The results show that the attractive interactions from σ' meson and OGE exchanges are dominantly important for S =0 and S =3 states, respectively, so their binding energies all become larger in coupled-channel calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call