Abstract

The voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC₄(3)] has been reported as a novel large-conductance Ca²⁺-activated K⁺ (BK) channel activator with selectivity for its β₁- or β₄-subunits. In arterial smooth muscle, BK channels are formed by a pore-forming α-subunit and a smooth muscle-abundant regulatory β₁-subunit. This tissue specificity has driven extensive pharmacological research aimed at regulating arterial tone. Using animals with a disruption of the gene for the β₁-subunit, we explored the effects of DiBAC₄(3) in native channels from arterial smooth muscle. We tested the hypothesis that, in native BK channels, activation by DiBAC₄(3) relies mostly on its α-subunit. We studied BK channels from wild-type and transgenic β₁-knockout mice in excised patches. BK channels from brain arteries, with or without the β₁-subunit, were similarly activated by DiBAC₄(3). In addition, we found that saturating concentrations of DiBAC₄(3) (~30 μM) promote an unprecedented persistent activation of the channel that negatively shifts its voltage dependence by as much as -300 mV. This "sweet spot" for persistent activation is independent of Ca²⁺ and/or the β₁₋₄-subunits and is fully achieved when DiBAC₄(3) is applied to the intracellular side of the channel. Arterial BK channel response to DiBAC₄(3) varies across species and/or vascular beds. DiBAC₄(3) unique effects can reveal details of BK channel gating mechanisms and help in the rational design of BK channel activators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.