Abstract

Although the spontaneous brain rhythms of sleep have commanded much recent interest, their detection and analysis remains suboptimal. In this paper, we develop a data-driven Bayesian algorithm for sleep spindle detection on the electroencephalography (EEG). The algorithm exploits the Karhunen-Loève transform and Bayesian hypothesis testing to produce the instantaneous probability of a spindle's presence with maximal resolution. In addition to possessing flexibility, transparency, and scalability, this algorithm could perform at levels superior to standard methods for EEG event detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.