Abstract

Owing to linkage and building block diversity, Porous Organic Polymers (POPs) are versatile materials with high potential in organic catalysis. Herein, nitrogen-rich POPs bearing –OH phenolic groups were synthesized via the diazo-coupling reactions between phloroglucinol and benzidine (PgBd-POP), and between 1,3,5-tris(4-aminophenyl)triazine and 4,4'-[1,1′-biphenyl]-4,4′-diylbis(diazene-2,1-diyl))diphenol (TAPT-Bd(PhOH)2-POP), under mild reaction conditions. The mesoporous polymers exhibited a BET surface area of 276 ± 4 m2 g−1 and 1.94 ± 0.06 m2 g−1, and chemical stability up to 315 °C and 330 °C, respectively. Both POPs were used as catalysts in metal-free Henry and Knoevenagel condensation reactions between aromatic aldehydes and nitromethane and ethyl cyanoacetate, respectively, under mild conditions. PgBd-POP showed a remarkable efficiency of up to 99% conversion and >99% selectivity, for the Henry nitroaldol reaction between 4-nitrobenzaldehyde and nitromethane, after only 1 h at room temperature, whereas TAPT-Bd(PhOH)2-POP generally exhibited the highest catalytic activity towards the Knoevenagel reaction, with up to 99% conversion for the condensation of 4-nitrobenzaldehyde with ethyl cyanoacetate, after 1 h at room temperature. These results confirm the potential of this class of porous materials as green catalysts for organic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.