Abstract

Deep-water diatremes and related eruption products are rare and they have been mainly interpreted from seismic-based data. We present lithofacies and geochemistry analysis of two Lower Cretaceous (Albian) deep-water diatremes and associated extra-diatreme volcaniclastic deposits at a well-exposed outcrop of the northern margin of the Basque-Cantabrian Basin (north Iberia). The studied diatremes are located along a N-S trending Albian fault and present sub-circular to elongate sections, inward-dipping steep walls and smooth to very irregular contacts with the host rocks. They are filled by un-bedded mixed breccias constituted by juvenile and lithic (sedimentary, igneous and metamorphic) clasts. Their textural and structural characteristics indicate that they represent lower diatreme and root zones of the volcanic system. Mapping, geochemical and petrologic data from diatreme-fills support their genetic relationship with the extra-diatreme volcaniclastic beds, which would be generated by the eruption of an incipiently vesicular trachytic magma. Studied diatremes result from multiple explosions that lasted over an estimated period of 65k.y. during the Late Albian (H. varicosum ammonite Zone, pro parte), and reached up to a maximum subsurface depth of ca. 370m, whereas extra-diatreme volcaniclastic beds were formed by eruption-fed gravity-driven flows on the deep-water (200–500m) paleoseabed. Petrological features suggest that these diatremes and related extra-diatreme deposits resulted mainly from phreatomagmatic explosions. In addition, organic geochemistry data indicate that the thermal effect of the trachytic melts on the sedimentary host caused the conversion of the abundant organic matter to methane and CO2 gases, which could also contribute significantly to the overpressure necessary for the explosive fragmentation of the magma and the host rocks. Considering the inferred confining pressures (ca. 8–11MPa) and the possible participation of unvesiculated (or degassed) melts, our results stress the importance of active hydraulic structures (e.g. faults) and the supplementary driving forces (e.g. thermogenic gases) in the formation of deep-water marine diatremes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call