Abstract

Previous research regarding laser-induced breakdown spectroscopy (LIBS) of titanium normally focuses on the atomic and ionic Ti spectral transition lines. However, after a characteristic time subsequent to laser ablation, these lines are no longer discernable. During this temporal regime, the diatomic molecular transition lines of titanium monoxide (TiO) are prominent in the laser-induced plasma (LIP) emissions. TiO has long been studied in the contexts of stellar emissions, allowing for some of the molecular transition bands to be accurately computed from theory. In this research, optical emission spectroscopy (OES) of laser-induced plasma (LIP) generated by laser ablation of titanium is performed in order to infer temperature as a function of time subsequent to plasma formation. The emission spectra of the resulting ablation plume is imaged as a function of height above the sample surface. Temperatures are inferred over time delays following plasma formation ranging from 20 μs-200 μs. Computed TiO A3Φ – X3Δ, Δv = 0 transition lines are fit to spectral measurements in order to infer temperature. At tdelay = 20 μs-80 μs, the observed plume contains two luminescent regions each with a distinctly different temperature. As the plume evolves in time, the two regions combine and an overall temperature increase is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.