Abstract

Species cooccurrence patterns give significant insights into the processes shaping communities. While biotic interactions have been widely studied using cooccurrence analyses in animals and larger plants, studies about cooccurrences among micro-organisms are still relatively rare. We examined stream diatom cooccurrences in France through a national database of samples. In order to test the relative influence of environmental, biotic and spatial constraints on species’ incidence distribution, cooccurrence and nestedness patterns of real communities were compared with the patterns generated from a set of standard and environmentally constrained null models. Real communities showed a higher level of segregation than the most conservative standard null models, but a general aggregation of cooccurrences when compared to environmentally constrained null models. We did not find any evidence of limiting similarity between cooccurring species. Aggregations of species cooccurrences were associated with the high levels of nestedness. Altogether, these results suggested that biotic interactions were not structuring cooccurrences of diatom species at our study scale. Instead, the patterns were more likely to be related with colonization patterns, mass effect, and local temporal dynamics of diatom biofilms. We further highlight that the association of standard and environmentally constrained null models may give realistic insight into the cooccurrence patterns of microbial communities.

Highlights

  • The forces underlying local community structure and the relationship with larger scale processes are central topics in community ecology

  • Depending on the ecological processes considered, they can be separated into three groups [2]: (i) dispersal assembly rules, (ii) abiotic assembly rules and (iii) biotic assembly rules

  • Aggregation of Diatom Cooccurrence assembly rules and ecological processes are regularly inferred from the measurements and tests of patterns they are expected to produce [2]

Read more

Summary

Introduction

The forces underlying local community structure and the relationship with larger scale processes are central topics in community ecology. Depending on the ecological processes considered, they can be separated into three groups [2]: (i) dispersal assembly rules (i.e., dispersal filters the species that enter a local site from the species pool), (ii) abiotic assembly rules (environmental preferences select the species, i.e., niche assembly) and (iii) biotic assembly rules (constraints related to the competition, facilitation or any other biotic interaction). Aggregation of Diatom Cooccurrence assembly rules and ecological processes are regularly inferred from the measurements and tests of patterns they are expected to produce [2]. We focus on the processes that drive species’ incidences and on cooccurrence patterns at a regional scale. Apart from environmental preferences of species studied through niche modeling, biotic interactions and dispersal processes are classically considered the most important drivers of species’ incidences

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call