Abstract
Reperfusion early during myocardial infarction improves ejection fraction and this improvement may represent myocardial salvage in the injured segment. Alternatively, reperfusion of injured myocardium may cause intramyocardial hemorrhage with resultant increased stiffness causing a dyskinetic segment to become akinetic, thus improving ejection fraction without concomitant myocardial salvage. To evaluate this possibility, diastolic stiffness was assessed in a closed chest, anesthetized, normothermic dog model immediately after a 1 or 3 h occlusion of the left anterior descending coronary artery and during the 4 weeks after occlusion.Acute myocardial infarction in experimental dogs was accompanied by a fivefold increase in the chamber stiffness constant, a threefold increase in the myocardial stiffness constant and a significant increase in elastic stiffness and end-diastolic pressure. These changes occurred contemporaneously with a marked decline in ejection fraction. Early reperfusion (1 h occlusion) resulted in improvement of the ejection fraction accompanied by simultaneous resolution of the previously increased stiffness. Late reperfusion (3 h occlusion) resulted in permanent depression of ejection fraction with permanent elevation of stiffness. These results indicate that the improved systolic function observed after early reperfusion reflects a process other than increased stiffness, perhaps salvage of jeopardized myocardium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.