Abstract

A formal palladium-catalyzed decarboxylative (4 + 2) cycloaddition reaction between 4-vinylbenzoxazinanones and 2-nitro-1,3-enynes has been developed to produce highly valuable, densely functionalized tetrahydroquinolines in moderate to excellent yields with high diastereoselectivity under mild reaction conditions. The optimised protocol tolerates a range of substituted 2-nitro-1,3-enynes, which represent an under-utilized class of dipolarophile for transition-metal catalyzed cycloadditions. The employed reaction methodology facilitates efficient cycloaddition with both N-H- and N-Ts-4-vinylbenzoxazinanone dipole precursors. The stereochemistry of the major and minor diastereomeric (4 + 2) cycloadducts was determined by single crystal X-ray analyses. A mechanistic rationale for the high intrinsic diastereoselectivity and preliminary enantioselective experiments are also presented. The tetrahydroquinoline cycloadduct products feature numerous pendant functionalities, including a vinyl handle, an internal alkyne motif and a nitro functionality (which functions as a latent C-3 nitrogen substituent) for further synthetic manipulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call