Abstract

The alkylations of chiral seven-membered rings fused to tetrazoles are highly diastereoselective. The diastereoselectivity depended on the placement and the size of the substituent on the ring and on the electrophile. Subsequent alkylations occurred with high stereoselectivity, allowing for the construction of quaternary stereocenters. Computational studies revealed that torsional effects are responsible for the observed diastereoselectivities. Substituted products can be reduced to the corresponding secondary amines, thus providing an approach for synthesizing diastereomerically enriched azepanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.