Abstract
AbstractSeveral typical 13C‐NMR displacements (of CO, C(α), C(β), and Cipso), as well as conformational or energy properties (SNCO dihedral angle, ΔE syn/anti; HOMO/LUMO) could be correlated with the electronic parameters of p‐substituted N‐cinnamoylbornane‐10,2‐sultams 2. Even under nonchelating conditions, the pyramidalization of the sultam N‐atom decreases for electron‐attracting p‐substituents, inducing a modification of the sultam‐ring puckering. Detailed comparison of the X‐ray structure analyses of 2b, 2d, and 2m showed that the orientation of the sterically directing pseudo‐axial SO(2) and HC(2) is modified and precludes any conclusion about the π‐facial stereoelectronic influence of the N lone pair on the alkyl Grignard 1,4‐addition. We also showed that the aggregating alkyl Grignard reagent may be used in equimolar fashion, demonstrating that the sultam moiety is chelated with a Lewis acid such as MgBr2. The Schlenk equilibrium may also be used to generate the appropriate conditions of effective 1,4‐diastereoselectivity. Although the anti‐s‐cis/syn‐s‐cis difference of conformational energies for N‐cinnamoyl derivatives 2 is higher than for the simple N‐crotonoyl analogue, an X‐ray structure analysis of the SO2/CO syn derivative 10 confirms the predictive validity of our conformational calculations for ΔE≤1.8 kcal/mol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.