Abstract

Diastereomers have historically been ignored when building kinetic mechanisms for combustion. Low-temperature oxidation kinetics, which continues to gain interest in both combustion and atmospheric communities, may be affected by the inclusion of diastereomers in radical chain-branching pathways. In this work, key intermediates and transition states lacking stereochemical specification in an existing diethyl ether low-temperature oxidation mechanism were replaced with their diastereomeric counterparts. Rate coefficients for reactions involving diastereomers were computed with ab initio transition state theory master equation calculations. The presence of diastereomers increased rate coefficients by factors of 1.2-1.6 across various temperatures and pressures. Ignition delay simulations incorporating these revised rate coefficients indicate that the diastereomers enhanced the overall reactivity of the mechanism by almost 15% and increased the peak ketohydroperoxide concentration by 30% in the negative temperature coefficient region at combustion-relevant pressures. These results provide an illustrative indication of the important role of stereomeric effects in oxidation kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.