Abstract
With recent initiatives to ban bisphenol A (BPA) in certain commercial products, manufacturers shifted to the production and use of BPA analogues. However, some of these BPA alternatives still possess endocrine disruptive activities. Many fungal enzymes are known to biodegrade phenolic compounds, such as BPA. However, the activity of these enzymes on BPA analogues remains unexplored. This study reports a secreted laccase from the endophytic fungus Diaporthe longicolla capable of degrading an impressive range of bisphenol analogues. The secreted crude enzymes are optimally active at pH 5 from 39 °C to 60 °C, efficiently degrading BPA as well as BPA analogues BPB, BPC, BPE and BPF. A purified form of laccase was identified from the crude fungal extract using FPLC and peptide sequencing. Furthermore, BPA induced the expression of this D. longicolla laccase gene. Overall, this paper demonstrated that the crude laccase enzyme from D. longicolla metabolizes BPA and select analogues, implicating the potential role of this fungus to remove environmental bisphenols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.