Abstract

The effect of diaphragm rupture by a conically-nosed projectile on the gasdynamics related to ram accelerator operation was experimentally and numerically studied. The experiments were conducted using a 25-mm-bore ram accelerator. Either air or nitrogen was used as the test gas. Using a high-speed image converter camera, it was observed that during the process of the diaphragm rupture a region with strong radiation developed between the diaphragm and the approaching projectile/sabot. This radiating region corresponds to the shock-heated gas which is originated from a precursory shock wave driven by the accelerating projectile/sabot. The flow around the projectile upon entering the test section by rupturing the diaphragm was visualized by holographic interferometry. During the diaphragm rupture, the system of oblique shock waves around the conical nose of the projectile was seen undisturbed on the downstream side of the diaphragm. Under the same condition as the experiment, numerical simulation was conducted using GRP (Generalized Riemann Problem) scheme which was extended to the computation of compressible flow fields bounded by moving surfaces. Two diaphragm rupture models were examined: (1) the diaphragm deformed by wrapping tightly around the moving projectile; (2) the diaphragm was ruptured instantly at the moment the projectile touched the diaphragm. Comparing these models with the experimentally visualized flow, the former was found to express the diaphragm rupture process much better than the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.