Abstract

Recently it was suggested that patients with pulmonary hypertension (PH) suffer from inspiratory muscle dysfunction. However, the nature of inspiratory muscle weakness in PH remains unclear. To assess whether alterations in contractile performance and in morphology of the diaphragm underlie inspiratory muscle weakness in PH. PH was induced in Wistar rats by a single injection of monocrotaline (60 mg/kg). Diaphragm (PH n = 8; controls n = 7) and extensor digitorum longus (PH n = 5; controls n = 7) muscles were excised for determination of in vitro contractile properties and cross-sectional area (CSA) of the muscle fibers. In addition, important determinants of protein synthesis and degradation were determined. Finally, muscle fiber CSA was determined in diaphragm and quadriceps of patients with PH, and the contractile performance of single fibers of the diaphragm. In rats with PH, twitch and maximal tetanic force generation of diaphragm strips were significantly lower, and the force-frequency relation was shifted to the right (i.e., impaired relative force generation) compared with control subjects. Diaphragm fiber CSA was significantly smaller in rats with PH compared with controls, and was associated with increased expression of E3-ligases MAFbx and MuRF-1. No significant differences in contractility and morphology of extensor digitorum longus muscle fibers were found between rats with PH and controls. In line with the rat data, studies on patients with PH revealed significantly reduced CSA and impaired contractility of diaphragm muscle fibers compared with control subjects, with no changes in quadriceps muscle. PH induces selective diaphragm muscle fiber weakness and atrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.