Abstract

Spatially resolved analyses reveal considerable isotopic heterogeneity within and among diamonds ranging in size from 0.15 to 4.75 mm from the Orapa Mine, Botswana. The isotopic data are interpreted in conjunction with nitrogen aggregation state data and growth zone relationships from cathodoluminescence images. The integrated information confirms that a distinct diamond growth event (with low IaAB nitrogen aggregation states, moderately high nitrogen contents and δ13C and δ15N values compatible with average mantle values) is younger than the dominant population(s) of Type IaAB diamonds and cores of composite diamonds with more negative and positive δ13C and δ15N values, respectively. A significant proportion of the older diamond generation has high nitrogen contents, well outside the limit sector relationship, and these diamonds are likely to reflect derivation from subducted organic matter. Diamonds with low δ13C values combined with high nitrogen contents and positive δ15N values have not been previously widely recognised, even in studies of diamonds from Orapa. This may have been caused by prior analytical bias towards inclusion-bearing diamonds that are not necessarily representative of the entire range of diamond populations, and because of average measurements from heterogeneous diamonds measured by bulk combustion methods. Two distinct low nitrogen/Type II microdiamond populations were recognised that do not appear to continue into the macrodiamond sizes in the samples studied. Other populations, e.g. those containing residual singly-substituted nitrogen defects, range in size from small microdiamonds to large macrodiamonds. The total diamond content of the Orapa kimberlite thus reflects a complex assortment of multiple diamond populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call