Abstract

A pixelated 2-D detector combining chemical-vapor-deposited diamond and the Timepix3 chip (“Diamondpix”) is presented. Its conceptual design with a brief description of the Timepix3 chip acquisition modes is outlined. The performance has been tested with fluorescence X-rays, fast neutrons, and electron beam. A first energy calibration has been obtained with X-rays and compared with an equivalent silicon Timepix3 detector. Measurements on fast neutrons and other radioactive source demonstrated a good gamma/neutron rejection capability. Moreover, Diamondpix has been exposed to a beam of ultrarelativistic electrons showing that it can act as a very powerful monitor of beam position, measuring simultaneously the charge released inside the detector and the time of arrival (ToA) of the particles by reconstructing the time profile of the beam bunches. Finally, high-intensity measurements show some delayed signals probably related to the trap defects inside the diamond. The first study of their spatial distribution correlated with the measurements of the charge released inside the diamond and ToA is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call