Abstract

AbstractA variety of diamondlike carbon (DLC) materials were investigated for their potential applications as low-k dielectrics for the back end of the line (BEOL) interconnect structures in ULSI circuits. Hydrogenated DLC and fluorine containing DLC (FDLC) were studied as a low-k interlevel and intralevel dielectrics (ILD), while silicon containing DLC (SiDLC) was studied as a potential low-k etch stop material between adjacent DLC based ILD layers, which can be patterned by oxygen-based plasma etchingIt was found that the dielectric constant (k) of the DLC films can be varied between >3.3 and 2.7 by changing the deposition conditions. The thermal stability of these DLC films was found to be correlated to the values of the dielectric constant, decreasing with decreasing k. While DLC films having dielectric constants k>3.3 appeared to be stable to anneals of 4 hours at 400 °C in He, a film having a dielectric constant of 2.7 was not, losing more than half of its thickness upon exposure to the same anneal. The stresses in the DLC films were found to decrease with decreasing dielectric constant, from 700 MPa to about 250 MPa. FDLC films characterized by a dielectric constant of about 2.8 were found to have similar thermal stability as DLC films with k >3.3. The thermally stable FDLC films have internal stresses <300 MPa and are thus promising candidates as a low-k ILD.For the range of Si contents examined (0-9% C replacement by Si), SiDLC films with a Si content of around 5% appear to provide an effective etch-stop for oxygen RIE of DLC or FDLC films, while retaining desirable electrical characteristics. These films showed a steady state DLC/SiDLC etch rate ratio of about 17, and a dielectric constant only about 30% higher than the 3.3 of DLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.