Abstract

Diamond tools suitable for machining operations of natural stones can be divided into two groups: cutting tools, including blades, the circular blades and the wires, and the surface machining ones, involving mills and grinders, that can be of different shapes. For the stone sawing process, the most adopted tool type is the diamond mill, whose duration and performance are influenced by various elements such as: the mineralogical characteristics of the material to be machined; the working conditions such as the depth of cut, the feed rate and the spindle speed; the production process of the diamond segment and the characteristics of both the matrix and the diamond, such as the size, the type and the concentration of the diamonds and the metal bond formulation hardness. This work allows to indirectly assess the wear of sintered diamond tools by signal analysis (in time and frequency domain) of the cutting force components acquired in the process. The results obtained represent a fundamental step for the development of a sensory supervision system capable of assessing the tool wear and hence to modify the process parameters in process, in order to optimize cutting performance and tool life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.