Abstract

We report experimental evidence of a substantial reduction of the sheet resistance of a commercially available (110) oriented natural diamond surface after exposure not to atomic but to molecular hydrogen. In a conventional CVD reactor, we have merely exposed the sample to high purity molecular hydrogen fluxes at 800 °C. After exposure to air, the surface conductivity increased several orders of magnitude as measured by a professional collinear four-point probe head with tungsten carbide tips. After annealing at 900 °C in vacuum ( P < 10 − 5 Pa) the conductivity dropped at least 4 orders of magnitude; repeatability tests on the measurements of the surface conductivity after thermal hydrogenation and subsequent air exposure were conducted in order to avoid systematic errors. Similar experiments were conducted at different process temperatures in order to evaluate the best process conditions. Thermal hydrogenation appears to be ineffective at increasing the surface conductivity of (100) homoepitaxial CVD diamonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.