Abstract

An optical parametric oscillator in the telecom wavelength range is realized in a diamond system consisting of a ring resonator coupled to a diamond waveguide. Threshold powers as low as 20 mW are measured and up to 20 new wavelengths are generated from a single-frequency pump laser. Despite progress towards integrated diamond photonics1,2,3,4, studies of optical nonlinearities in diamond have been limited to Raman scattering in bulk samples5. Diamond nonlinear photonics, however, could enable efficient, in situ frequency conversion of single photons emitted by diamond's colour centres6,7, as well as stable and high-power frequency microcombs8 operating at new wavelengths. Both of these applications depend crucially on efficient four-wave mixing processes enabled by diamond's third-order nonlinearity. Here, we have realized a diamond nonlinear photonics platform by demonstrating optical parametric oscillation via four-wave mixing using single-crystal ultrahigh-quality-factor (1 × 106) diamond ring resonators operating at telecom wavelengths. Threshold powers as low as 20 mW are measured, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the first measurement of the nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.