Abstract

Coating boron-doped diamond nanowires (BDD NWs) with a conducting polymer, poly[3-(pyrrolyl)carboxylic acid], has been reported. Polymer coating was achieved through electropolymerization of 3-(pyrrolyl)carboxylic acid at the electrode interface by amperometrically biasing the BDD NWs interface until a predefined charge has passed. The poly[3-(pyrrolyl)carboxylic acid] modified BDD NWs (PPA-BDD NWs) were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Using a deposition charge of 11 mC cm(-2) resulted in a thin polymer film deposition. The availability of the carboxylic groups of the polymer coated BDD NWs electrode was demonstrated through copper ion (Cu(2+)) chelation. The resulting complex was successfully used for the site-specific immobilization of histidine-tagged peptides. The binding process was followed by electrochemical impedance spectroscopy (EIS). The Cu(2+)-chelated PPA-BDD NWs interface showed peptide loading capability comparable to those of commercially available interfaces and can be easily regenerated several times using ethylenediaminetetraacetic acid (EDTA).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call